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ABSTRACT
Green Fluorescent Protein (GFP)-tagging and time-lapse flu-
orescence microscopy enable to observe molecular dynamics
and interactions in live cells. Original image analysis meth-
ods are then required to process challenging 2D or 3D image
sequences. To address the tracking problem of several hun-
dreds of objects, we propose an original framework that pro-
vides general information about vesicle transport, that is traf-
fic flows between origin and destination regions detected in
the image sequence. Traffic estimation can be accomplished
by adapting the advances in Network Tomography commonly
used in network communications. In this paper, we address
image partition given vesicle stocking areas and multipaths
routing for vesicle transport. This approach has been devel-
oped for real fluorescence image sequences and Rab proteins.

Index Terms— Traffic control (transportation), mi-
croscopy, fluorescence, proteins, video, routing, tracking.

1. INTRODUCTION

To preserve the structure, cohesion and functions of the organ-
ism, the eukaryotic cell exchanges information between its
compartments on physical supports such as intermediate fila-
ments or microtubules. In our study, the transport intermedi-
ates corresponding to small spherical vesicles move along mi-
crotubules and are propelled by molecular motors. We focus
on the traffic between the Golgi apparatus and the endoplas-
mic reticulum in eukaryotic cells, presumably regulated by
two isoforms of the Rab6 GTPase (Rab6A and Rab6A’). Ob-
servation of protein dynamics in live cells using GFP-tagging
and time-lapse fluorescence video-microscopy can be used to
investigate and clarify the role of Rab6A and Rab6A’ in ret-
rograde transport [5]. It is worth noting that the GFP-Rab6
proteins are either free (diffusion) in the cytosol, or located at
the periphery of the Golgi membrane, or anchored to the vesi-
cle membrane and microtubules (corresponding to traffic).
Image processing methods have been developed to track

vesicles over time. The most commonly used tracking con-
cept is the so-called “connexionist” approach [1] which con-
sists in detecting particles independently in each frame in a
first step, and then linking the detected objects over time. The
related data association task is the most critical step when

the number of objects is very high and the trajectories in-
teract. Temporal stochastic filters [2], particle filtering tech-
niques [3] or graph-theory based methods [4] have been then
developed to improve temporal matching. In [5], the authors
applied a deterministic approach assuming that vesicles are
moving along the microtubule network, and thus the number
of paths is limited. Kymogram-based modeling is then used
for analyzing temporal profiles of different paths. The main
limitation of this method is that each path is independently su-
pervised. In [6], the authors propose also to use minimal paths
method for estimating the object trajectories without individ-
ual object tracking.
In this paper, we propose an alternative and global ap-

proach for traffic analysis. The idea is to estimate the number
of vesicles going from origin to destination regions. Our es-
timation method is inspired from the Network Tomography
(NT) concept [7] developed for network communications and
further applied to video surveillance in [8]. We just need to
count the number of “objects/vehicles” in different image re-
gions at each time step. Our contributions are twofolds: i)
we extend the usual NT concept described in Section 2 to
non-binary routing from geodesic paths given the image se-
quence; ii) we propose an estimation/optimization framework
to derive counting measurements from image intensities (flu-
orescence) and to solve the traffic flow problem.

2. TRAFFIC MODEL: NETWORK TOMOGRAPHY

In time-lapse fluorescence microscopy, GFP-Rab6 proteins
involved in traffic correspond to small lighted blobs along the
unobserved microtubule network from origin regions (Golgi
apparatus) to destination regions (“end-points” located at the
periphery of the cell). We decide to adapt the Network To-
mography (NT) approach introduced to estimate vehicle traf-
fic flows [9] and re-popularized in computer networks [7] to
solve our traffic flow problem.
In this modeling, the network is described as a graph

G (E, V ) defined by n vertices and r edges, where E de-
notes the set of edges (microtubule pieces), and V the set
of vertices (vesicle stocking areas or microtubule crossings).
Each pair of neighbor vertices is connected by two edges in
order to enable traffic in both directions (see Fig. 1 (left)).
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OD pair # edge
1 2 3 4 5 6 7 8 9 10

B→ A 0 0 0 0 0 1 0 0 0 0
B→ C 1 0 0 0 0 1 0 0 0 0
B→ D 0 0 0 0 0 0 1 0 0 0

. . . . . .

Fig. 1. Lefft: “toy” graph: the vertices are labeled by letters and the edges by
numbers; right: Several rows ofA corresponding to the “toy” graph.

Then, the vesicles follow a path defined by an origin ver-
tex, a destination vertex, and possible intermediate vertices.
The set of paths can be then characterized by the origin and
destination vertices, that is the Origin/Destination pairs (OD
pairs). Given n vertices in the graph, c = n(n − 1) OD pairs
are possible. In NT, given the number of objects detected
as going from one vertex to a neighbor vertex, the goal is to
estimate the proportions of vesicles for each OD pair.
More formally, let xf,t be the number of vesicles on the

OD pair #f at time t. The measurements ye,t correspond
to the number of vesicles that pass through edge #e at time
t. We then assume the following model: Y = AX, where
Y = {ye,t}e∈{1,...,r},t∈{1,...,T} is the set of measurements,
X = {xf,t}f∈{1,...,c},t∈{1,...,T} the unknown OD flows, T

the number of images andA denotes the r× c routing matrix
with binary elements aef = 1 if edge e belongs to the path for
the OD pair#f (defined as the shortest path in the graph), and
0 otherwise. A cost is then associated to each edge (Euclidean
distance between vertices, number of vertices in the path, ...),
and the Dijkstra algorithm [10] is applied to the whole graph
for computing the shortest path for each OD pair. In Fig. 1
(right), we give several rows of the matrixA corresponding to
the graph shown in Fig. 1 (left) when the Euclidean distance
between the vertices is considered.
To apply NT in video analysis, we then need to provide

a graph given an image sequence, a relevant metric/criterion
for computing the routing matrix A and generate temporal
counting measurements in spatial regions to form Y.

3. GRAPH CONSTRUCTION

The microtubule network extraction is really hard to perform
since we only observe small lighted blobs. Nevertheless, the
Maximum Intensity Projection (MIP) map provides useful
information about partial trajectories of vesicles and vesicle
stocking areas. Accordingly, we extract the origin and desti-
nation regions by segmenting the MIP map and labeling the
graph vertices.

3.1. Extraction of origin/destination regions

The MIP map in the direction of time axis is defined at each
point p in the image as: MIP(p) = maxt∈{1,...,T} It(p),
where It(p) is the intensity observed at point p in the image
It. A preliminary pre-processing step [11] is first applied
to substract the image background (vesicles free in the cy-
tosol and those anchored at the Golgi membrane). A typical

Fig. 2. Image sequence and MIP map. Left) typical image (and zoomed-in views)
extracted from a time-lapse microscopy image sequence; middle) MIP map extracted
from the sequence corresponding to the image at left (with zoomed-in views of areas
of interest). For clarity, the high fluorescence levels are depicted with dark values and
a gamma correction is applied for better visualization; right): graph associated to the
partition of Fig. 3 a) with colors corresponding to the colors of segmented regions related
to the image partition

MIP map is shown in Fig. 2 (middle). The likely origin
and destination regions appear as darker and larger regions
than moving blobs because vesicles are temporally stocked
in these areas. Hence, a segmentation of the MIP map can
be used to detect the OD regions in the image. By applying
the segmentation method described in [12] to the MIP map of
Fig. 2 (middle), meaningful regions are extracted as shown in
Fig. 3 a).
In the NT-based approach, the data Y correspond to the

number of vesicles that pass through edges at each time step.
Accordingly, we need an image partition composed of adja-
cent regions for temporal object counting (see [8]).

3.2. Image partition based on the minimal paths method

To partition the image, we exploit the minimal paths method
[13]. In this setting, the minimal action map computed from
a seed point provides for each point in the image a measure
proportional to the minimal path between this point and the
seed point. Image partition is then achieved by computing a
minimal action map for each segmented region. More for-
mally, the minimal action map U1 associated to seed point p1

is defined ∀p ∈ Ω (Ω denotes the MIP map domain) as:

U1(p) = min
Ap1,p

{∫
γp1,p

[v + P(γp1,p(s))]ds

}
,

whereAp1,p2 is the set of planar curves connecting the points
(p1, p2) ∈ Ω × Ω, γp1,p2 is a curve in Ap1,p2 , v ≥ 0 is a con-
stant andP : Ω → R

+∗ gives the intensity at the current point
p. The partition Gj associated to segmented region of center
pj is then derived as: Gj = {p ∈ Ω : Uj(p) ≤ Ui(p), ∀i ∈
{1, . . . , N}, i �= j}. The set of R partitions associated to the
segmented regions with centers {p1, . . . , pR} forms the im-
age partition: Part(Ω) =

⋃
j∈{1,...,R} ∂Gj , where ∂Gj is the

boundary of region Gj . In practice, we use the fast march-
ing algorithm [13] to compute the minimal action maps. The
image partition based on the MIP map of Fig. 2 is shown in
Fig. 3 a).
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a) b) c)
Fig. 3. a) image partition based on the minimal paths method applied to the MIP
map shown in Fig. 2 (right) given the seed points (labeled by black crosses) defined
as gravity centers of the segmented regions (appearing as colored areas); b-c) minimal
paths computed for connecting region pairs (with zoomed-in views). The MIP map
appears as a bright region in the background and the minimal paths are depicted in red.
In a), b) and c), the regions Gj (image partition) are depicted with light-to-dark green
variations.

Given a partition of the MIP map, we define the vertices
(regions) and edges (region boundaries) to form a graph (see
Fig. 2 (right)). In addition, we also need to define a cost for
each edge to derive the routing matrix A.

3.3. Costs for edges

Theminimal paths between the gravity centers of neighboring
regions can be used to define the edge costs. Let MP1,2 be the
minimal path between the gravity centers p1 and p2:

MP1,2 = min
Ap1,p2

{∫
γp1,p2

[v + P(γp1,p2(s))]ds

}
.

To get MP1,2, the minimal action map U1 (resp. U2) is first
computed. A gradient descent is then applied from p2 (resp.
p1). We define the edge cost between the regions#1 and#2
as the integral of intensity of the MIP map along the minimal
path. Two typical examples of minimal paths used to define
path costs are depicted in Fig. 3 b) and c). In the first exam-
ple, a relatively short path is computed while in the second
example, the path is much longer than the Euclidean distance
between the two region centers. This demonstrates that a few
vesicles are moving directly through the common boundary
#∂1,2. These costs will be used to derive an original form for
the routing matrix A.

4. TRAFFIC ESTIMATION

In our study, it is established that the level of fluorescence is
proportional to the number of vesicles at each pixel. Our idea
to infer the number of vesicles passing through each edge (i.e.
Y) amounts to computing the difference of intensity variation
at two consecutive time steps in each neighboring region.

4.1. Y computation

We consider the fluorescence exchanges at vertex A in the
graph shown in Fig. 1 (left). Let zv,t be the total amount of

OD pair # edge
1 2 3 4 5 6 7 8 9 10

A → B
m3

M
0

m2

M
0

m1

M
0 0

m2 + m3

M

m3

M
0

Table 1. Non-binary routing matrix for the OD pair A → B corresponding to
the graph shown in Fig. 1 (left). We associate the path A → B to the probability m1 ,
A → D → B tom2, andA → C → D → B tom4, andM = m1+m2+m3.

fluorescence in the complete region corresponding to vertex
v at time t, and let ye,t be the fluorescence intensity to be
determined on edge e at time t. Then we observe: zA,t+1 −
zA,t = y2,t+1 − y1,t+1 + y4,t+1 − y3,t+1 + y6,t+1 − y5,t+1.
This equation can be extended to all vertices: let ΔZ be

the R × T matrix denoting the difference of fluorescence in-
tensity in each region between two consecutive time steps.
Let Y be the r × T matrix representing the level of fluores-
cence that fluctuates on edges at each time step. We define
M as the so-called “neighborhood n × r matrix” composed
of ternary elements m ∈ {−1, 0, 1} that expresses neighbor-
hood relationships. Then, we haveΔZ = MY, and the prob-
lem is under-constrained (r > n). We assume that all the
components of Y are positive since Y represents counts. Fi-
nally, the measurements are obtained by solving the following
optimization problem:

Ŷ = min
Y

‖ ΔZ− MY ‖2 subject toY ≥ 0.

4.2. Probabilistic routing matrix

In our study, it is also desired that the vesicles can follow
different paths for going from an origin to a destination re-
gion. For each OD pair, we compute all the paths linking
the origin to the destination thanks to a depth-first search in
the graph. To each path, we associate a cost defined as the
sum of edge costs. Unlike to the usual NT [7], we consider
a probabilistic routing matrix and propose the following prior
probabilities mw ∝ exp

(
− cw

σ

)
, where cw denotes the cost

of path w, and σ is a constant. In practice, σ is different
for each OD pair and is chosen to be the smallest path cost
for the current OD pair to encourage the shortest paths. The
probabilistic routing matrix is then derived as follows. Let
{we}i, i ∈ {1, . . . , Q}, be the set of paths that use the edge e

and letm(we)i
be the corresponding probability. Hence, each

element ae,f of the non-binary routing matrix A is defined as

ae,f =
PQ

i=1 m(we)iP
r
e′=1

PQ
i=1 m(w

e′
)i

.

For illustration, the row of the non-binary routing matrix
for the OD pair A → B in the graph shown in Fig. 1 (left) is
given in Tab.1.

4.3. NT optimization

In our study, we are only interested in the proportions of vesi-
cles on each OD pair for the whole image sequence. So we
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propose instead to solve the following optimization problem:

min
x̄

‖ȳ − Ax̄‖2 s.t. x̄f ≥ 0, f ∈ {1, . . . , c}, (1)

where x̄ = (x̄1, . . . , x̄c)
T contains the positive proportions of

vesicles for each OD pair and ȳ = (ȳ1, . . . , ȳr)
T defined as

ȳe = 1
T

∑T
t=1 ye,t, ∀e ∈ {1, . . . , r} correspond to tempo-

ral averages. As the traffic is observed only on a few of OD
pairs, we add a parsimony constraint and solve the following
problem:

min
x̄

‖ȳ − Ax̄‖2 + λ‖x̄‖0 s.t. x̄f ≥ 0, f ∈ {1, . . . , c},

where ‖x̄‖0 = #{x̄i �= 0}, i ∈ {1, . . . , c}. An alternative
to express the parsimony constraint is to introduce hard con-
straints about the origin or destination vertices if known. For
example, assume that vertex r is the single origin region. Let
R be all the OD pairs that have r for origin andO the set of all
OD pairs. The routing matrix A is then updated as follows:
A(e,O �R) = 0, ∀e ∈ {1, . . . , r}. The same restriction can
be applied to impose additional origin or destination vertices.
Once the routing matrix is updated, the problem (1) is solved
by standard non-negative mean square minimization.

5. EXPERIMENTAL RESULTS

The NT concept was successfully experimented on Rab6 traf-
fic simulations in [14]. We propose four experiments corre-
sponding to the sequence composed of 121 images (2-bytes)
using time-lapse fluorescence (wide-field) microscopy (res-
olution: 160nm × 160nm, frame rate: 2 images/sec.), and
shown in Fig. 2 (left). In a preliminary step, the background
was removed using [11]. The traffic estimation results are re-
ported in Fig. 4. In this figure, the black region corresponds
to a masked area, consequently the fluorescence variations in
this region are not taken into account.
In Fig. 4 a) and b), we compare the estimated OD flows

between a single path routing matrix and a probabilistic rout-
ing matrix. According to the expert-biologists, the vesicles
mostly move from the Golgi Apparatus (blue region) to “end-
points” located at the periphery of the cell. With a single path
routing, a lot of significant OD pairs are estimated in any di-
rections with no preference. This result is not satisfying and
is not consistent with the prior knowledge given by the ex-
perts. By considering a probabilistic routing matrix, a limited
number of significant OD pairs are estimated, mainly oriented
from the image center to the periphery.
For the experiments shown in Fig. 4 c) and d), the Golgi

apparatus region (in blue) is compelled to be an origin region.
In these experiments, two different partitions/segmentations
are used. In both experiments, three principal directions for
the traffic are extracted with roughly similar estimated traffic
flows: from the Golgi apparatus to respectively the top (22%–
24%), left bottom (41%–30%) and right bottom (37%–46%)
of the figure. This tends to show that traffic flows are hierar-
chically organized and “motorways” can be identified.

a) b) c) d)
Fig. 4. Results obtained by applying the NT-based approach on the sequence shown
in Fig. 2 (left). The colored areas correspond to the segmented regions and the partition
is labeled with light-to-dark green variations. The arrows represent the estimated OD
pairs, and the corresponding colored numbers at the left top represent traffic proportions.

6. CONCLUSION

In this paper, we have proposed a general framework for
traffic flow estimation without individual tracking of mov-
ing objects. First, an image partition is performed from a
crude segmentation of the OD regions using the minimal
paths method. Then, an adjacency graph with edge costs pro-
portional to the path lengths is computed. Finally, we solve
the traffic flow problem by considering a probabilistic rout-
ing matrix and temporal counting measurements to extract
meaningful paths corresponding to “motorways” for vesicle
trafficking in molecular imaging. More intensive experiments
have been conducted but cannot be reported in this paper.
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[14] T. Pécot, J. Boulanger, C. Kervrann, and P. Bouthemy, “Network tomography for
trafficking simulation and analysis in fluorescence microscopy imaging,” in Proc.
of IEEE ISBI’07, Arlington, 2007, pp. 268–271.

846


